Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes.

نویسندگان

  • Lin Sun
  • Tingting Su
  • Lei Xu
  • Hong-Bin Du
چکیده

Nanostructured silicon has attracted a great deal of attention as an excellent anode material for Li ion batteries (LIBs). However, the use of Si nanomaterials in LIBs is severely hindered by their preparative methods owing to the high cost, low yield, and harsh synthetic conditions. Herein, we report a new method for the synthesis of uniform Si nanocrystals based on the magnesiothermic reduction of natural attapulgite clay. The obtained Si nanocrystals with a uniform size of ca. 10 nm are coated with polypyrrole (denoted ppy@Si) and show excellent electrochemical performance as anode materials for LIBs. After charging-discharging for 200 cycles at a current density of 0.6 A g(-1), the specific capacity value of the ppy@Si anode is ∼954 mA h g(-1). Because of the abundance of attapulgite, the obtained silicon nanoparticles can be exploited as a practical anode material for high-performance Li-ion batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

The recovery of useful materials from earth-abundant substances is of strategic importance for industrial processes. Despite the fact that Si is the second most abundant element in the Earth's crust, processes to form Si nanomaterials is usually complex, costly and energy-intensive. Here we show that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricu...

متن کامل

Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodesw

We designed and fabricated binder-free, 3D porous silicon nanostructures for Li-ion battery anodes, where Si nanoparticles electrically contact current collectors via vertically grown silicon nanowires. When compared with a Si nanowire anode, the areal capacity was increased by a factor of 4 without having to use long, high temperature steps under vacuum that vapour– liquid–solid Si nanowire gr...

متن کامل

Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.

We designed and fabricated binder-free, 3D porous silicon nanostructures for Li-ion battery anodes, where Si nanoparticles electrically contact current collectors via vertically grown silicon nanowires. When compared with a Si nanowire anode, the areal capacity was increased by a factor of 4 without having to use long, high temperature steps under vacuum that vapour-liquid-solid Si nanowire gro...

متن کامل

Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability.

Silicon has a large specific capacity which is an order of magnitude beyond that of conventional graphite, making it a promising anode material for lithium ion batteries. However, the large volume changes (∼ 300%) during cycling caused material pulverization and instability of the solid-electrolyte interphase resulting in poor cyclability which prevented its commercial application. Here, we hav...

متن کامل

Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.

Silicon (Si) has been considered a very promising anode material for lithium ion batteries due to its high theoretical capacity. However, high-capacity Si nanoparticles usually suffer from low electronic conductivity, large volume change, and severe aggregation problems during lithiation and delithiation. In this paper, a unique nanostructured anode with Si nanoparticles bonded and wrapped by g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2016